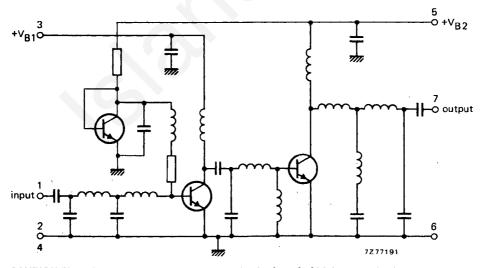
Island Labs

VHF. POWER AMPLIFIER MODULES

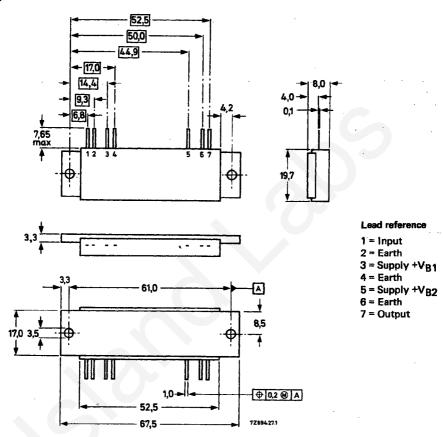


A range of broadband amplifier modules designed for mobile communications equipments, operating directly from 12 V vehicle electrical systems. The devices will produce 18 W output into a 50 Ω load. The modules consist of a two stage r.f. amplifier using n-p-n transistor chips, together with lumped-element matching components.

QUICK REFERENCE DATA

type number	mode of operation		nominal supply voltages VB1 = VB2 (V)	power	load power P _L (W)	nominal input impedance $z_i(\Omega)$	nominal load impedance Z _L (Ω)
BGY32	c.w.	68 to 88	12,5	100	> 18 typ 23	50	50
BGY33	c.w.	80 to 108	12,5	100	> 18 typ 22	50	50
BGY35	c.w.	132 to 156	12,5	150	> 18 typ 22	50	50
BGY36	c.w.	148 to 174	12,5	150	> 18 typ 21	50	50

CIRCUIT DIAGRAM


CAUTION These devices incorporate beryllium oxide, the dust of which is toxic. The devices are entirely safe provided that they are not dismantled.

Dimensions in mm

── MECHANICAL DATA

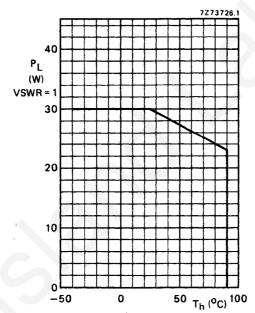
Fig. 1 SOT-132.

Mounting and soldering recommendations

To ensure good thermal transfer the module should be mounted using heatsink compound onto a heatsink with a flat surface; if an isolation washer is used heatsink compound should be used on both sides of the insulator. Burrs and thickening of the holes in the heatsink should be removed and 3 mm bolts tightened to torques of 0,5 Nm minimum.

Devices may be soldered directly into a circuit with a soldering iron at maximum iron temperature of $245\,^{\circ}\text{C}$ for 10 seconds at least 1 mm from the plastic.

RATINGS


Limiting values in accordance with the Absolute Maximum System (IEC 134)

D.C. voltages (with respect to flange)

D.C. supply terminals	V _{B1} and V _{B2}	max	15 V
R.F. input terminal	±V _I	max	25 V
R.F. output terminal	±V _O	max	25 V

Power

1 0401				
Input drive power BGY32 and BGY33	-	P_{D}	max	200 mW
Input drive power BGY35 and BGY36		PD	max	300 mW
Load power		PL	max	30 W

Temperatures

Storage temperature	T _{stg}	-40 to	100	oC
Operating heatsink temperature	Th	max	90	οС

CHARACTERISTICS

Quiescent current

A LA CALLE			BGY32 6 13	BGY33 6 13	6 13	6	mA mA
$V_{B1} = V_{B2} = 12,5 \text{ V; } P_D = 0;$ $R_S = R_L = 50 \Omega$	BQ1 BQ2	typ typ					
Frequency range	f	> <	68 88	80 108	132 156		MHz MHz
Load power							
$V_{B1} = V_{B2} = 12,5 \text{ V; R}_S = R_L = 50 \Omega$ BGY32 and BGY33; $P_D = 100 \text{ mW}$	PL	> typ	18 23	18 22	_	-	W W
50 1 32 and 50 133, FD - 100 mm	η	> typ	40 50	40 50	-	_	% %
BGY35 and BGY36 ; P _D = 150 mW	PL	> typ	-	-	18 22	18 21	-
DG 135 and DG 130; PD - 130 mw	ſ	_			40	40	07

Harmonic output

Any single harmonic will be at least 25 dB down relative to carrier

40 % 50 %

Input VSWR with respect to 50 Ω

•

typ 1,5

The module is stable with load VSWR up to 3 (all phases) when operated with matched output power greater than 6 W.

Ruggedness

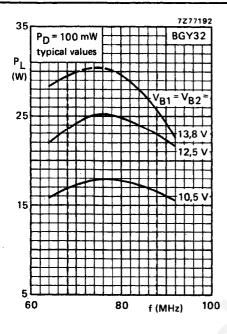
Stability

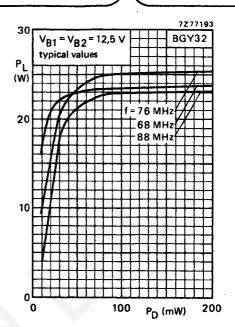
The modules are capable of withstanding load mismatch of up to 50 VSWR for short period overload conditions, with P_D , V_{B1} and V_{B2} at maximum values providing the combination does not result in the matched r.f. output power rating being exceeded.

APPLICATION INFORMATION

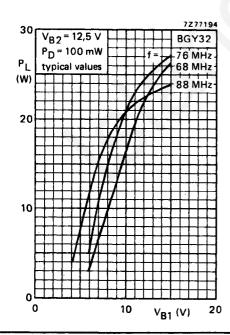
Supply

An electrolytic capacitor of 10 μ F (25 V), in parallel with a polyester capacitor of 100 nF to earth, is recommended as decoupling arrangement for each power supply pin.


Power rating


In general it is recommended that the output power from the module under nominal design conditions should not exceed 23 W in order to provide adequate safety margin under fault conditions.

Gain control


Power output can be controlled by variation of the driver stage supply voltage V_{B1} . The supply required is a voltage regulator with a current rating of 0,75 A, and an output voltage range of 3 V to 12 V.

