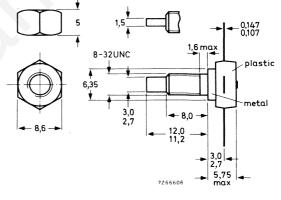


Dimensions in mm

V.H.F. POWER TRANSISTOR


N-P-N epitaxial planar transistor intended for use in class A, B and C operated mobile, industrial and military transmitters with a supply voltage of 13.5 V. The transistor is resistance stabilized. Every transistor is tested under severe load mismatch conditions with a supply overvoltage to 16.5 V. It has a $\frac{1}{4}$ " capstan envelope with a moulded cap. All leads are isolated from the stud.

QUICK REFERENCE DATA									
R.F. performance up to $T_{mb} = 25 ^{o}C$ in an unneutralised common-emitter class B circuit.									
Mode of operation	V _{CC}	f	P _S	PL	IC	G _p	η	 zī	Ϋ́L
	(V)	(MHz)	(W)	(W)	(A)	(dB)	(%)	(Ω)	(mA/V)
c.w.	13.5	175	< 1.0	8	< 0.85	> 9	> 70	2.8 + j1.2	76 - j16
c.w.	12.5	175	typ.1.0	8	typ.0.91	typ.9	typ.70	-	-

MECHANICAL DATA

SOT -48

Torque on nut: min. 7.5 kg cm (0.75 Newton metres) max. 8.5 kg cm (0.85 Newton metres) Diameter of clearance hole in heatsink: max. 4.17 mm.

Mounting hole to have no burrs at either end. De-burring must leave surface flat; do not chamfer or countersink either end of hole.

When locking is required, an adhesive instead of a lock washer is preferred.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

VCBOM

VCEO

VEBO

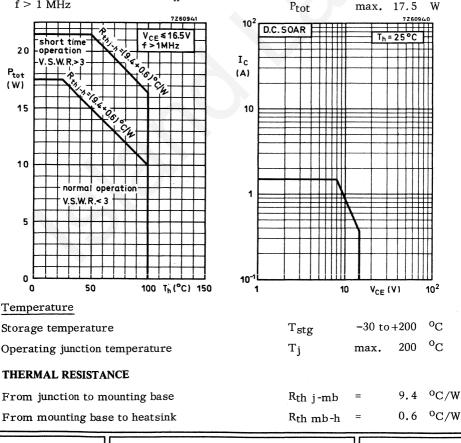
IC(AV)

ICM

Voltages

Collector-base voltage	(open	emitter)
peak value		

- Collector -emitter voltage (open base)
- Emitter -base voltage (open collector)


Currents

Collector current (average)

Collector current (peak value) f > 1 MHz

Power dissipation

Total power dissipation up to T_{h} = 25 $^{o}\mathrm{C}$ f > 1 MHz

April 1971

36 V

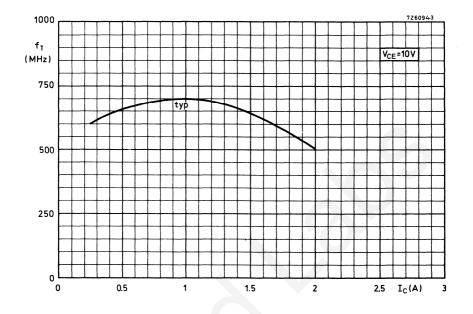
18 V

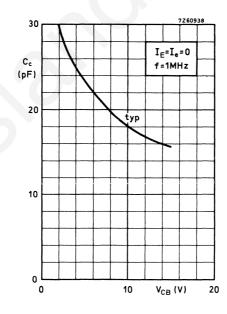
4 V

А

А

max.


max.

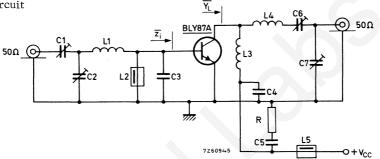

max.

max. 1.25

max. 3.75

CHARACTERISTICS T _j = 2	25 ^o C unless o	therwi	ise sp	ecified
Collector cut-off current				
$I_B = 0; V_{CE} = 14 V$	ICEO	<	5	mA
Breakdown voltages				
Collector -base voltage open emitter, $I_C = 1 \text{ mA}$	V(BR)CBO	>	36	v
Collector -emitter voltage open base, IC = 10 mA	V(BR)CEO	>	18	v
Emitter-base voltage				
open collector, $I_E = 1 \text{ mA}$	V(BR)EBO	>	4	v
Transient energy				
L = 25 mH; f = 50 Hz				
open base - $V_{BE} = 1.5 V$; $R_{BE} = 33 \Omega$	E E	>	0.5 0.5	mWs mWs
D.C. current gain				
$I_{C} = 500 \text{ mA}; V_{CE} = 5 \text{ V}$	$h_{\rm FE}$	>	5	
Transition frequency				
$I_{\rm C}$ = 500 mA; $V_{\rm CE}$ = 10 V	\mathbf{f}_{T}	typ.	700	MHz
Collector capacitance at $f = 1$ MHz				
$I_E = I_e = 0; V_{CB} = 15 V$	Cc	typ. <	15 20	pF pF
Feedback capacitance at f = 1 MHz				r -
$I_{C} = 100 \text{ mA}; V_{CE} = 15 \text{ V}$	Cre	typ.	11	pF
Collector -stud capacitance	Ccs	typ.	2	pF

April 1971

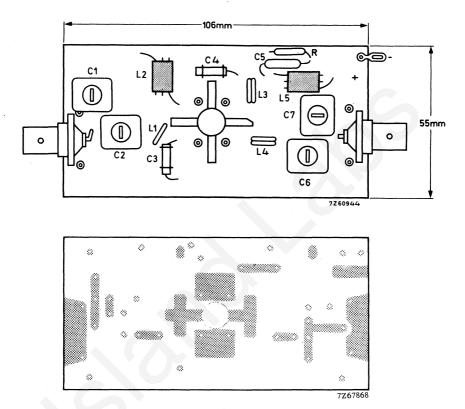

APPLICATION INFORMATION

R.F. performance in c.w. operation (unneutralised common-emitter class B circuit)

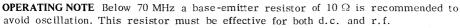
f = 175 MHz; T_{mb} up to 25 ^{o}C

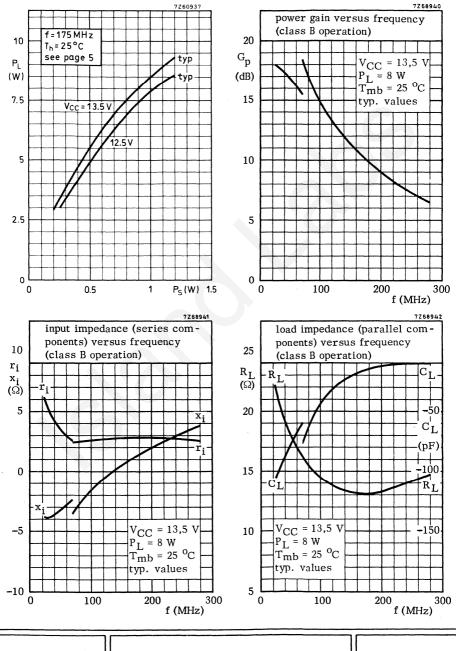
$V_{CC}(V)$	P _S (W)	$P_{L}(W)$	IC (A)	G _p (dB)	n(%)	$\overline{z}_{i}(\Omega)$	$\overline{Y}_{L}(mA/V)$
13.5	< 1.0	8	< 0.85	> 9	> 70	2.8 + j1.2	76-j16
12.5	typ.1.0	8	typ. 0.91	typ.9	typ.70		_

Test circuit

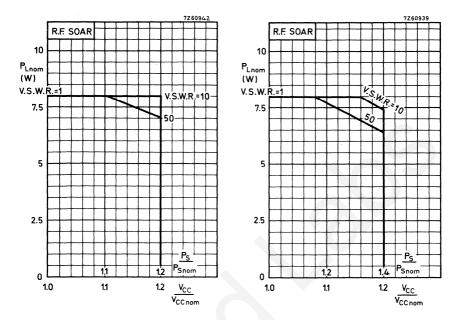


C1 =	2.5 to 20 pF film dielectric trimmer (code number 2222 809 07004)
C2 = C6 = C	7= 4 to 40 pF film dielectric trimmer (code number 2222 809 07008)
C3 =	47 pF ceramic
C4 =	100 pF ceramic
C5 =	150 nF polyester
L1 = L2 = L5 =	0.5 turn enamelled Cuwire (1.5 mm); int.diam. 6 mm; leads 2 x 10 mm ferroxcube choke (code number 4312 020 36640)
L3 =	2.5 turns closely wound enamelled Cu wire (1.5 mm); int. diam. 6 mm; leads 2 x 10 mm
L4 =	4.5 turns enamelled Cu wire (1.5 mm); int. diam. 6 mm; leads 2 x 10 mm
$R = 10 \Omega$	carbon


Component lay-out for 175 MHz test circuit see page 6


APPLICATION INFORMATION (continued)

Component lay-out and printed circuit board for 175 MHz test circuit.



The circuit and the components are situated on one side of the epoxy fibre-glass board, the other side being fully metallised to serve as earth. Earth connections are made by means of hollow rivets.

.....

Conditions for R.F. SOAR:

f = 175 MHz P = P at V C = V C nom T_h = 70 °C R th mb-h = 0.6 °C/W and V.S.W.R. = 1 V_{CCnom} = 12.5 or 13.5 V see also page 5

The transistor has been developed for use with unstabilized supply voltages. As the output power and drive power increase with the supply voltage, the nominal output power must be derated in accordance with the graphs above for safe operation at supply voltages other than the nominal. The graphs show the allowable output power under nominal conditions, as a function of the supply overvoltage ratio, with V.S.W.R. as parameter.

The left hand graph applies to the situation in which the drive (P_S/P_{Snom}) increases linearly with supply overvoltage ratio.

The right hand graph shows the derating factor to be applied when the drive (P_S/P_{Snom}) increases as the square of the supply overvoltage ratio (V_{CC}/V_{CCnom}) .

Depending on the operating conditions, the appropriate derating factor may lie in the region between the linear and the square -law functions.