

CML Semiconductor Products

FX611

Subscriber Private Metering (SPM) Detector

Specifications

Detection Modes

Adjustable Input Gain

Meets 12kHz and 16kHz SPM


Tone Follower and SPM Packet

Low-Power 5V CMOS Process

With compliments of Island Labs Publication D/611/3 July 1988 Advance Information

- PABX and Payphone Applications
- General Purpose Pulse Detection
- Surface Mount and DIL Package Styles
- Crystal Controlled

FX611

ESCO VENETO s.r.l.

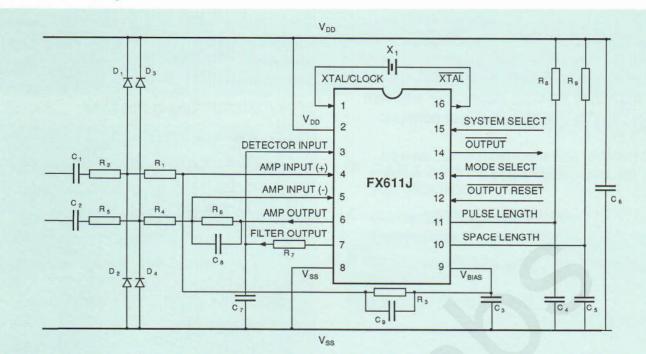
Viale Mazzini, 131 36100 VICENZA Tel. 0444/546355 - 546010 Fax 0444/547399

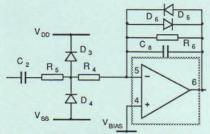
Brief Description

The FX611 is a single-chip, low-power CMOS tone detector designed for use in both the PABX and general payphone applications for Subscriber Private Metering. The Decode and Not-Decode band edges are accurately defined by the use of an external 4.433619MHz crystal. Operation to either of the 12kHz or 16kHz SPM systems is pin programmable, with system amplitude sensitivities and pulse period timing being provided by the use of external components.

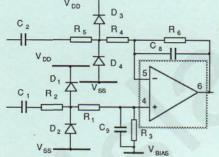
The FX611 has 2 modes of operation :

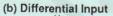
- 1) Tone Follower Mode.
- 2) SPM Packet Mode.

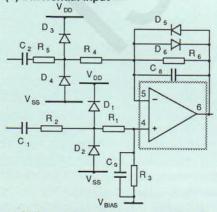

- Tone Follower Mode. A logic '0' is output whenever a tone of the correct frequency and period is detected.
- SPM Packet Mode. In this mode an output is obtained <u>only</u> when both the mark and space timing criteria of an SPM pulse have been fulfilled.


This device, which is available in DIL and SMT packages requires only a single 5-volt power supply, a 4.433619MHz crystal and external gain and timing components to meet most SPM specifications.

Pin Number Function


DIL FX611J	Quad FX611LG/LH					
1	1	Xtal/Clock : Input to the clock oscillator inverter. A single 4.33619MHz Xtal or external clock pulse is required at this input (see Figure 2).				
2	2	V _{DD} : The positive supply rail, a single +5-volt supply is required.				
3	5	Detector Input : "Schmitt Trigger" level detector circuitry, whose input thresholds are set internally. This input must be connected to the Filter Output pin by the external integration components R_7 and C_7 , as shown in Figure 2.				
4	6	The positive and negative amplifier inputs, with single or Amplifier Input (+) : differential inputs the amplifier and its external circuitry are used to provide the gain required to set the device to the user's National Level Specification. The external diodes are used at				
5	7	Amplifier Input (-): level exceeds the supply rails (ie above the Absolute Maximum Rating), see Figure 2.				
6	8	Amplifier Output : The output of the input stage amplifier and is used with gain setting components (see Figure 2.				
7	11	Filter Output : The switched (12kHz/16kHz) bandpass filter output. This output must be connected to the Detector Input pin by the external integration components R_7 and C_7 , as shown in Figure 2.				
8	12	V _{ss} : The negative supply rail, (GND).				
9	13	$\mathbf{V}_{_{\text{BIAS}}}$: The analogue bias point, requires to be externally decoupled to $\mathbf{V}_{_{\text{SS}}}$ via capacitor $\mathbf{C}_{_{3}}.$				
10	14	Space Length Time : Active only in the 'SPM Packet' mode, this input, using an external RC network, sets the minimum valid No-Tone (Space) period for the incoming packet. The minimum valid No-Tone length is set using the formula : $t_s = 0.7 (R_g \times C_5)$. If the 'SPM Packet' mode is not required, these timing components may be omitted. See Figure 2.				
11	17	Pulse Length Time : Active only in the 'SPM Packet' mode, this input, using an external RC network, sets the minimum valid Tone period for the incoming packet. The minimum valid Tone length is set using the formula : $t_{\rm M} = 0.7 (R_{\rm g} \times C_{\rm 4})$. If the 'SPM Packet' mode is not required, these timing components may be omitted. See Figure 2.				
12	18	Output Reset : This input is used only in the 'SPM Packet' mode. Once an SPM Packet has been detected and an output generated (logic "0") from this device the output remains set until this input is set to a logic "0". This input has an internal $1M\Omega$ pullup resistor.				
13	19	Mode Select : A control pin to select either the 'Tone Follower' mode or the 'SPM Packet' mode. A logic "1 " selects 'Tone Follower', a logic "0" selects 'SPM Packet'. This input has an internal $1M\Omega$ pullup resistor (Tone Follower).				
14	20	Output : The digital output of the SPM Detector. In the 'Tone Follower' mode, a valid tone gives a logic "0" and no-tone gives a logic "1." Tonebursts and tone dropouts of less than 16 cycles are ignored. In the 'SPM Packet' mode, the output is set to a logic "0" when a valid 'packet' is measured. The output remains so until reset by a logic "0" at the Output Reset function, see Figure 4.				
15	23	System Select : A control pin to set the device to work on either a 12kHz (logic "1") or 16kHz (logic "0") SPM system. This input has an internal 1M Ω pullup resistor (12kHz).				
16	24	Xtal : The output of the clock oscillator inverter, see Figure 2.				
	3, 4, 9, 10, 15, 16, 21, 22.	No Internal Connection. Leave open circuit.				


External Components



(a) Single Input With Output Limiting

(c) Differential Input With Output Limiting

Component	Reference	Component	Reference
R,	Figure 3	C,	Figure 3
R	Figure 3	C'	Figure 3
R,	Figure 3	C ² C ²	1.0µF ± 20%
R,	Figure 3	C,	Note 1
R.	Figure 3	C.	Note 1
R	Figure 3	C ₆	1.0µF ± 20%
R,	$47k\Omega \pm 1\%$	C,	100pF ± 1%
R _a	Note 1	C's	Note 5
R	Note 1	C°,	Note 5
D, to D,	1N414 or equivalent	X,	4.433619MHz

Notes

1. Component values (R_a , C_a), set the minimum tone 'Mark' period and (R_g , C_5), set the minimum 'Space' period in the SPM Packet mode and are calculated as :-

 $t_{M} = 0.7 (R_{g} \times C_{4}).$ $t_{S} = 0.7 (R_{g} \times C_{5}).$

 Mark and Space calculations should be made taking into consideration response times – t_R and t_p (Figure 4). –

2. Input Amplifier gain components (Figure 2 (a,b,c) – these components set the gain required (Figure 3) to achieve the various National Level Specifications. Instructions for gain calculations are given on Page 4.

3. Protection diodes – as most telephone systems operate at voltages in excess of the Absolute Maximum Limits for damage, diodes $D_1 - D_4$ are <u>essential</u> for device protection. Diodes $D_5 \& D_6$ (Figure 2 (a & c) are included to limit "High Gain" amplifier outputs, keeping the bandwidth response within specification. Investigation of specific installations will indicate if and when these components are required.

4. Example component values for the West German 'FTZ' Specification :-"Will Decode" Sensitivity (Min.) -21dB

"Will Not Decode" Sensitivity Calculated gain range: 0 to -4dB.

Selected gain: -2dB.

-27dB

 $\mathsf{R_1} = 56 \mathrm{k}\Omega \ , \ \mathsf{R_2} = 56 \mathrm{k}\Omega \ , \ \mathsf{R_3} = 110 \mathrm{k}\Omega \ , \ \mathsf{R_4} = 56 \mathrm{k}\Omega \ , \ \mathsf{R_5} = 56 \mathrm{k}\Omega \ , \ \mathsf{R_6} = 110 \mathrm{k}\Omega \ .$

C₁- 180pf, C₂- 180pf, C₈- 39pf, C₉- 39pf.

Tolerances : Resistors = 1%. Capacitors = 10%.

5. C_{a} , C_{a} , are anti-aliasing components and should be set for a cut-off frequency of approximately 32kHz.

Fig.2 External Component Connections

Amplitude and Timing

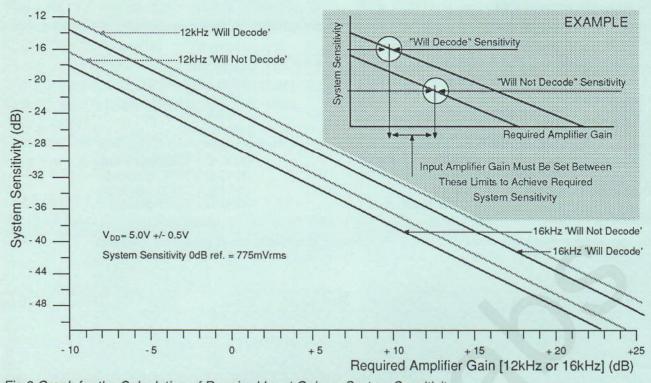
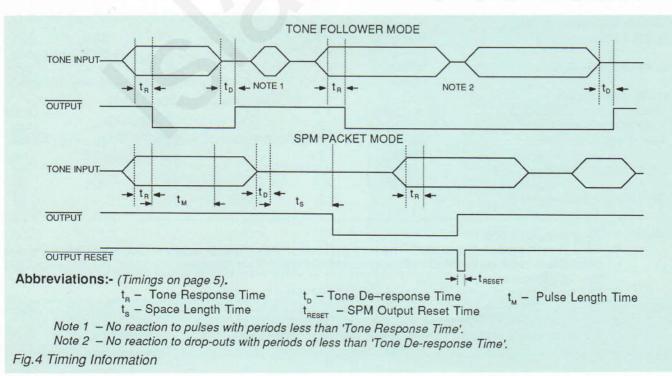


Fig.3 Graph for the Calculation of Required Input Gain vs System Sensitivity

Input Gain Calculation


Apply the system 'Will' and 'Will-Not' Decode sensitivity values ('Y' axis) to the relevant graph in Figure 3. The 'X' axis indicates the input gain area required. Gain is calculated as :- $R_a = R_a$

 $\frac{P_{\text{teedback}}}{Z_{\text{input}}} = \frac{R_6 // X(C_8)}{R_4 + R_5 + X(C_2)} \text{ and } \begin{array}{l} R_3 = R_6 \\ R_1 = R_4 \\ R_2 = R_5 - \text{if the differential amplifier is used.} \\ C_9 = C_8 \\ C_1 = C_2 \end{array}$

Input resistor, $R_{protect}$ (R, or R_4) is intended to prevent the amplifier input pins going beyond the supply rail voltages, therefore when calculating the input gain the value of $R_{protect}$ must be greater or equal to 0.15 $R_{teedback}$ (R_3 or R_6). It is recommended that the input time constant is set as a highpass value between audio and the SPM tone frequencies, with

 C_1 or C_2 being calculated with input resistors to achieve both time and gain requirements.

Example values for the West German 'FTZ' specification (in the differential configuration), are given on Page 3, Note 4.

Specification

Absolute Maximum Ratings

Exceeding the maximum rating can result in device damage. Operation of the device outside the operating limits is not implied.

Supply Voltage Input Voltage at any pin (ref V _S Sink/source current (supply pins (other pins)	5)	-0.3 to 7.0V -0.3 to (V _{DD} + 0.3V) ± 30mA ± 20mA
Total device dissipation @ T _{AME} Derating	325°C	800mW Max. 10mW/°C
Operating temperature range:	FX611J FX611LG/LH	-30° C to + 85°C (ceramic) -30°C to + 70°C (plastic)
Storage temperature range:	FX611J FX611LG/LH	-55°C to +125°C (ceramic) -40°C to + 85°C (plastic)
Operating Limite		4 /

Operating Limits

All device characteristics are measured under the following conditions unless otherwise specified :- $V_{DD} = 5.0V$, $T_{AMB} = 25^{\circ}C$, Xtal/Clock $f_0 = 4.433619$ MHz, Audio level 0dB ref: = 775mV rms.

Signal to Noise Ratio ≥18dB.

Characteristics	System	See Note	Min.	Тур.	Max.	Unit
Static Values						
Supply Voltage (V _{DD}) Supply Current (I _{DD})			4.5	5.0	5.5	V
Supply Current (Ipp)			-	3.0	3.5	mA
Analogue Input Impedance (at pins)			1.0			MΩ
Digital Input Impedance			1.0	1 A	-	MΩ
Digital Output Impedance			-	(1) (- 1) -	10.0	kΩ
Dynamic Values						
Sensitivity	12kHz	7	-	-24.0	-	dB
Sensitivity	16kHz	7	-	-25.5	0 2	dB
Signal to Noise Ratio			18.0	-	-	dB
Detector Threshold (Upper)		8	2.95	3.0	3.05	V
Detector Threshold (Lower)		8	1.95	2.0	2.05	V
Bandpass Filter						
Passband Gain	12kHz	6		18.0		dB
Passband Gain	16kHz	6	-	20.0	-	dB
Passband Ripple	12kHz	6	-	-	1.0	dB
Passband Ripple	16kHz	6	-	-	1.5	dB
Audio Band Attenuation (< 3.4kHz)	12kHz		45.0	-	_	dB
	16kHz		50.0	-	_	dB
Frequency Discrimination						
'Will Decode' Frequency Limits	12kHz		11.82	-	12.18	kHz
	16kHz		15.76	-	16.24	kHz
'Will not Decode' frequency						
Upper Limits	12kHz		12.48	-	50.0	kHz
	16kHz		16.64	-	50.0	kHz
Lower Limits	12kHz		0	-	11.52	kHz
	16kHz		0	<u> </u>	15.36	kHz
Timing Information						
Valid toneburst Length (t _M)	12kHz/16kHz	1,2	16.0	· · ·	_	cycles
Valid 'space' Length (ts)	12kHz/16kHz		5.0	_	-	ms
Tone Response Time (t _e)	12kHz	1,3,4	—	2.7	15.0	ms
	16kHz	1,3,4	_	2.0	10.0	ms
De-response Time (t _p)	12kHz	4,5	-	1.5	2.0	ms
	16kHz	4,5		1.1	1.5	ms
SPM Output Reset Time (t _{RESET})	12kHz/16kHz		150.0	-	-	ns

Notes: 1. Tone follower mode.

- 2. SPM Packet mode in this mode the minimum valid Pulse (Space) length is programmable by means of an RC network on the Pulse (Space) Length Time pin. If no RC network is used, the minimum valid tone length reverts to16 cycles.
- 3. The time for the circuit to recognise a valid 'Tone' in the Tone Follower mode.

- Signal to Noise ratio ≥18dB. Noise Bandwidth = 100kHz.
 The time for the circuitry to recognize a valid 'no tone' in the tone follower mode.
- 6. Over the 'Will Decode' bandwidth of the frequency discriminator.

7. With the input gains set to unity. Input gain requirements are calculated with reference to Figure 3.

8. These thresholds are measured at 5-volt V_{DD}, any supply variation will alter thresholds accordingly.

Or

FX FX

FX

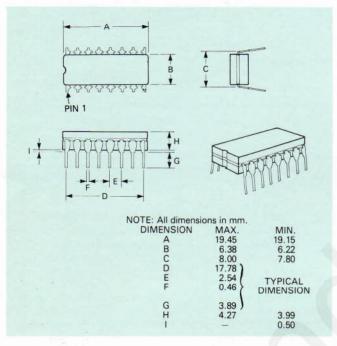
Pa

The

Fig 6, 6 To 'LH tor pin Pin

froi

Package Outline


The FX611J, the cerdip package is shown in Figure 5. The 'LG' version is shown in Figure 6, and the 'LH' version in Figure 7.

To allow complete identification, the 'LG' and 'LH' packages have an indent spot adjacent to pin 1 and a chamfered corner between pins 3 and 4.

Pins number anti-clockwise when viewed from the top (indent side).

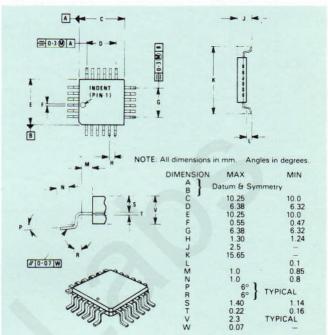
Fig.5 FX611J 16-pin DIL Package

Ordering Information

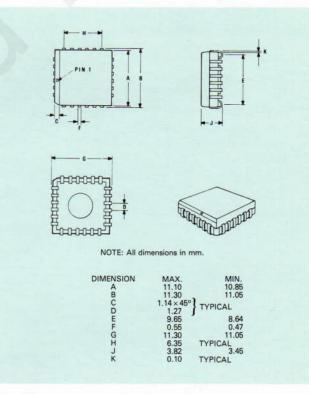
16-pin cerdip DIL

cropped

carrier


24-pin quad plastic encapsulated bent and

24-lead plastic leaded chip


Handling Precautions

The FX611 is a CMOS LSI circuit which includes input protection. However precautions should be taken to prevent static discharges which may cause damage.

Fig.6 FX611LG 24-pin Package

Fig.7 FX611LH 24-lead Package

CML does not assume any responsibility for the use of any circuitry described. No circuit patent licences are implied and CML reserves the right at any time without notice to change the said circuitry.

FX611J

FX611LG

FX611LH

CONSUMER MICROCIRCUITS LIMITED

WITHAM - ESSEX CM8 3TD - ENGLAND © 1988 Consumer Microcircuits Limited Telephone: (0376) 513833 Telex: 99382 CMICRO G Telefax (0376) 518247